

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-files 1.0 documentation

Welcome to django-files documentation!

Thanks for checking out django-files.
This project aims to be an easy, portable, pluggable and maintainable attachments framework for Django.

See the detailed table of contents for specific information.

	About django-files

	Basic usage

	Retrieving URL’s

Installation

From the Python package index (pypi)

$ pip install django-files

OR

$ easy_install django-files

From Git

$ git clone git://github.com/rhblind/django-files.git
$ cd django-files
$ python setup.py install

This will install django-files in your PYTHONPATH.

Note

If you are using virtualenv, remember to activate your environment before running the setup script.

Configuration

After you have installed django-files in your PYTHONPATH, you need to add it to your INSTALLED_APPS in your django project.

...
INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sites',
 ...
 'files', # django-files attachments framework
 ...
)

You will also need to enable the django.contrib.auth, django.contrib.contenttypes and the django.contrib.sites apps, as they are used in the Attachment class.

Optional settings

DEFAULT_FILE_STORAGE

Set the filesystem storage backend to use.

DEFAULT_FILE_STORAGE = "files.storage.SQLiteStorage"

This option set what kind of file storage backend you would like to use. If omitted, the default is django.core.files.storage.FileSystemStorage.

Valid backends are:

	django.core.files.storage.FileSystemStorage

	files.storage.SQLiteStorage

	files.storage.PostgreSQLStorage

REQUIRE_AUTH_DOWNLOAD

If this is set to True, users are required to be
authenticated in addition to be have the "files.download_attachment"
permission to be able to download files. Default is False.

REQUIRE_AUTH_DOWNLOAD = True

Attention

The next two options has no effect if using a database storage backend, as the file is stored directly in the database and will be wiped away when the row is deleted.

FORCE_FILE_RENAME

If using the FileSystemStorage, setting this to True will
append a FORCE_FILE_RENAME_POSTFIX postfix on files in the filesystem which
has had their database reference deleted. Has no effect on
database storage backends.

FORCE_FILE_RENAME = True

FORCE_FILE_RENAME_POSTFIX

Set this to whatever you want your removed files to be
appended with. Defaults to "_removed". This setting has no
effect on the database storage backends, as they are gently
killed.

FORCE_FILE_RENAME_POSTFIX = "_removed"

ATTACHMENT_MAX_SIZE

Set the max allowed file size (in bytes) for attachments.
If not set, no file size restrictions will be enforced.
Note that this check will be performed after the file has
been uploaded into the memory. Please make sure to protect your
web server by setting (i.e. LimitRequestBody) to prevent uploading
big files in memory.

ATTACHMENT_MAX_SIZE = 4194304 # 4 MB

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 About django-files

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-files 1.0 documentation

About django-files

This project is the result of the need for a portable, consistent, flexible and DRY attachment system in a project I’m currently working on. As Django provides an excellent base for this with the ContentTypes framework [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/], and provides a great example for how to implement this in their Comments framework [https://docs.djangoproject.com/en/dev/ref/contrib/comments/], this proved to be an (almost) trivial task.

Features

	Based on the Comments framework [https://docs.djangoproject.com/en/dev/ref/contrib/comments/], which means it should be quite recognizable.

	Seamless integration with the existing FileSystemStorage backend

	Database storage bacends. This allows you to store files directly in the database. No manual configuration or creation of database tables are required (Only PostgreSQL and SQLite implemented so far).

	No unit tests whatsoever! This is completly untested code, no kidding!

Todo

Write a unit test suite, and make it pass!

Warning

Storing files in your database should be used with caution if you have lots of attachments. This might severly degrade your database performance. Storing files in your filesystem (after all, that’s what filesystems do best) are much more efficient performance wise.

Want to help?

As I don’t have access to either a MySQL (yes, I could just install it) or an Oracle database, nor do I have any skills on either databases, database backend support on these needs to be implemented.

If you want to help out, fork django-files [https://github.com/rhblind/django-files] on github, implement the backend, and submit a pull request!

Bug fixes are of course also welcome =)

 Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Basic usage

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-files 1.0 documentation

Basic usage

If you have downloaded the git version, you will see that it includes a demosite app, which demonstrates the use of django-files. In the demosite we have a model called Shape which we will use through this documentation as the object we relate our attachments to.

The demosite/models.py file

from django.db import models
from django.utils.translation import ugettext_lazy as _

class Shape(models.Model):

 SHAPES = (
 (u"square", u"Square"),
 (u"rectangle", u"Rectangle"),
 (u"triangle", u"Triangle")
)

 COLORS = (
 (u"red", u"Red"),
 (u"blue", u"Blue"),
 (u"green", u"Green"),
 (u"yellow", u"Yellow")
)

 shape = models.CharField(max_length=10, choices=SHAPES)
 color = models.CharField(max_length=10, choices=COLORS)
 descr = models.TextField(_("description"), blank=True, null=True)

 class Meta:
 unique_together = ["color", "shape"]

 def __unicode__(self):
 return u"%s %s" % (self.color, self.shape)

Let’s assume we create a row in our database like this

>>> from demosite.models import Shape
>>> s = Shape(shape="square", color="green", descr="A green square")
>>> s.save()
>>> Shape.objects.all()
[<Shape: green square>]

We now have a green square object which we can add some attachments to.

Hooking into the attachments framework

If you have ever used the Comments framework [https://docs.djangoproject.com/en/dev/ref/contrib/comments/] in Django, this should be quite familiar. The django-files app comes with a number of template tags which are used to manage the attachments related to objects.

Note

Remember to load the attachment template tags into your context like this.

{% load attachments %}

Say we have a view rendering a template with a single shape object context variable.

Adding attachments

files.templatetags.attachments.render_attachment_form()

<h1>Render the upload form</h1>

{% load attachments %}

<div>

 {% render_attachment_form for shape %}

</div>

As in the Comments framework [https://docs.djangoproject.com/en/dev/ref/contrib/comments/] this will render an upload form directly into the context.
Or, alternatively, if you wish to render your form fields independently:

files.templatetags.attachments.get_attachment_form()

{% get_attachment_form for shape as form %}

<form action="{% get_create_target %}" method="post" enctype="multipart/form-data">
 {% csrf_token %}
 {% for field in form %}

 {{ field }}

 {% endfor %}

 <input type="submit" name="submit" value="{% trans "Upload file" %}" />
</form>

In which case you will need to provide the rest of the <form> as well as
<submit /> buttons yourself.

Tip

get_create_target() can be used to retrieve the
url for the view which should accept the POST request.

The form template will search a number of location for a template, and return the first that match, so that you can easily override the default template.

[image: more info] See Override default templates for more info how to customize your templates.

Listing attachments

Similary we can render a list of attachments related to an object by using the

files.templatetags.attachments.render_attachment_list()

{% render_attachment_list for shape %}

Or get the list as a context variable

files.templatetags.attachments.get_attachment_list()

{% get_attachment_list for shape as attachment_list %}

{% for attachment in attachment_list %}

 {{ attachment }}

{% endfor %}

Editing attachments

The edit form works in the same manners as the create form, with both a method for rendering the form directly into the context, or to store the form in a context variable and manually render the individual fields of the form.

files.templatetags.attachments.render_attachment_editform()

<h1>Render the edit form</h1>

{% load attachments %}

<div>

 {% get_attachment_list for shape as attachment_list %}

 {% for attachment in attachment_list %}

 {% render_attachment_editform for attachment %}

 {% endfor %}

</div>

files.templatetags.attachments.get_attachment_editform()

{% get_attachment_editform for attachment as form %}

<form action="{% get_edit_target attachment %}" method="post" enctype="multipart/form-data">
 {% csrf_token %}
 {% for field in form %}

 {{ field }}

 {% endfor %}

 <input type="submit" name="submit" value="{% trans "Save changes" %}" />
</form>

Attention

When rendering the edit form manually, you must use the get_edit_target() or the get_edit_url() tag as the form action
(They calls the same method, so either is fine).

Counting attachments

Get a count of related attachments to some object.

files.templatetags.attachments.get_attachment_count()

{% get_attachment_count for shape as attachment_count %}

{{ shape }} has got {{ attachment_count }} attachments.

Retrieving URL’s

The follwing tags are available for resolvin URL’s for attachments.

Create attachment URL

files.templatetags.attachments.get_create_target()

Takes no arguments.

Reverse the named URL view-attachment, which calls the AttachmentCreateView

View attachment details URL

files.templatetags.attachments.get_view_url()

Requires an attachment slug argument.

Reverse the named URL view-attachment, which calls the AttachmentDetailView

Edit attachment URL

files.templatetags.attachments.get_edit_url()
files.templatetags.attachments.get_edit_target()

Requires an attachment slug argument.

Reverse the named URL edit-attachment, which calls the AttachmentEditView

Delete attachment URL

files.templatetags.attachments.get_delete_url()

Requires an attachment slug argument.

Reverse the named URL delete-attachment, which calls the AttachmentDeleteView

Download attachment URL

files.templatetags.attachments.get_download_url()

Requires an attachment slug argument.

Reverse the named URL download-attachment, which calls the AttachmentDownloadView

 Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	django-files 1.0 documentation

 Python Module Index

 a |
 f |
 m |
 s |
 t |
 v

 			

 		
 a	

 	
 	
 admin	

 			

 		
 f	

 	
 	
 forms	

 			

 		
 m	

 	
 	
 models	

 			

 		
 s	

 	
 	
 storage	

 			

 		
 t	

 	[image: -]
 	
 files.templatetags	

 	
 	
 files.templatetags.attachments	

 			

 		
 v	

 	
 	
 files.views	

 Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Index

 Navigation

 	
 index

 	
 modules |

 	django-files 1.0 documentation

Index

 _
 | A
 | B
 | C
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S

_

 	

 	_open() (files.storage.PostgreSQLStorage method)

 	

 	(files.storage.SQLiteStorage method)

 	_save() (files.storage.PostgreSQLStorage method)

 	

 	(files.storage.SQLiteStorage method)

 	

 	_unlink_binary() (files.storage.PostgreSQLStorage method)

 	_write_binary() (files.storage.PostgreSQLStorage method)

 	

 	(files.storage.SQLiteStorage method)

A

 	

 	admin (module)

 	Attachment (class in files.models)

 	AttachmentAdmin (class in files.admin)

 	AttachmentCountNode (class in files.templatetags.attachments)

 	AttachmentCreateView (class in files.views)

 	AttachmentDeleteView (class in files.views)

 	AttachmentDetailView (class in files.views)

 	

 	AttachmentDownloadView (class in files.views)

 	AttachmentEditFormNode (class in files.templatetags.attachments)

 	AttachmentEditView (class in files.views)

 	AttachmentForm (class in files.forms)

 	AttachmentFormNode (class in files.templatetags.attachments)

 	AttachmentInlines (class in files.admin)

 	AttachmentListNode (class in files.templatetags.attachments)

B

 	

 	BaseAttachmentAbstractModel (class in files.models)

 	

 	BaseAttachmentNode (class in files.templatetags.attachments)

C

 	

 	clean_attachment() (files.forms.AttachmentForm method)

 	clean_honeypot() (files.forms.AttachmentForm method)

 	

 	clean_security_hash() (files.forms.AttachmentForm method)

 	clean_timestamp() (files.forms.AttachmentForm method)

F

 	

 	files.templatetags.attachments (module)

 	files.views (module)

 	

 	form_class (files.views.AttachmentCreateView attribute)

 	

 	(files.views.AttachmentEditView attribute)

 	forms (module)

G

 	

 	generate_security_data() (files.forms.AttachmentForm method)

 	generate_security_hash() (files.forms.AttachmentForm method)

 	get_attachment_count() (in module files.templatetags.attachments)

 	get_attachment_editform() (in module files.templatetags.attachments)

 	get_attachment_form() (in module files.templatetags.attachments)

 	get_attachment_list() (in module files.templatetags.attachments)

 	get_context_value_from_queryset() (files.templatetags.attachments.BaseAttachmentNode method)

 	

 	get_create_target() (in module files.templatetags.attachments)

 	get_delete_url() (in module files.templatetags.attachments)

 	get_download_url() (in module files.templatetags.attachments)

 	get_edit_target() (in module files.templatetags.attachments)

 	get_edit_url() (in module files.templatetags.attachments)

 	get_template_names() (files.views.AttachmentDeleteView method)

 	get_view_url() (in module files.templatetags.attachments)

H

 	

 	handle_token() (files.templatetags.attachments.BaseAttachmentNode class method)

 	

 	(files.templatetags.attachments.RenderAttachmentFormNode class method)

 	(files.templatetags.attachments.RenderAttachmentListNode class method)

I

 	

 	initial_security_hash() (files.forms.AttachmentForm method)

M

 	

 	model (files.views.AttachmentCreateView attribute)

 	

 	(files.views.AttachmentDeleteView attribute)

 	(files.views.AttachmentDetailView attribute)

 	(files.views.AttachmentDownloadView attribute)

 	(files.views.AttachmentEditView attribute)

 	

 	models (module)

N

 	

 	NextMixin (class in files.views)

P

 	

 	PostgreSQLStorage (class in files.storage)

R

 	

 	render_attachment_editform() (in module files.templatetags.attachments)

 	render_attachment_form() (in module files.templatetags.attachments)

 	render_attachment_list() (in module files.templatetags.attachments)

 	

 	RenderAttachmentEditFormNode (class in files.templatetags.attachments)

 	RenderAttachmentFormNode (class in files.templatetags.attachments)

 	RenderAttachmentListNode (class in files.templatetags.attachments)

S

 	

 	security_errors() (files.forms.AttachmentForm method)

 	set_is_private() (files.admin.AttachmentAdmin method)

 	set_is_public() (files.admin.AttachmentAdmin method)

 	

 	SQLiteStorage (class in files.storage)

 	storage (module)

 Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _images/info.png

_static/minus.png

_static/comment-bright.png

modules/templatetags.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Provided template tags

attachments.py

		
class files.templatetags.attachments.AttachmentCountNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Insert a count of attachments into the context

		
class files.templatetags.attachments.AttachmentEditFormNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Insert a form for the attachment model instance into the context

		
class files.templatetags.attachments.AttachmentFormNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Insert a form for the attachment model into the context

		
class files.templatetags.attachments.AttachmentListNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Insert a list of attachments into the context

		
class files.templatetags.attachments.BaseAttachmentNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Base helper class for handling the get_attachment_* template
tags.
Modelled after the contrib.comments framework

		
get_context_value_from_queryset(context, qs)

		Subclasses should override this.

		
classmethod handle_token(parser, token)

		Class method to parse get_attachment_list/count/form
and return a Node

		
class files.templatetags.attachments.RenderAttachmentEditFormNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Render the edit form directly

		
class files.templatetags.attachments.RenderAttachmentFormNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Render the attachment form directly

		
classmethod handle_token(parser, token)

		Class method to parse render_comment_form and return a Node.

		
class files.templatetags.attachments.RenderAttachmentListNode(ctype=None, object_pk_expr=None, object_expr=None, as_varname=None, attachment=None)

		Render the attachment list directly

		
classmethod handle_token(parser, token)

		Class method to parse render_attachment_list and return a Node.

		
files.templatetags.attachments.get_attachment_count(parser, token)

		Gets the attachment count for the given params and populates the template
context with a variable containing that value, whose name is defined by the
‘as’ clause.

Syntax:

{% get_attachment_count for [object] as [varname] %}
{% get_attachment_count for [app].[model] [object_id] as [varname] %}

Example usage:

{% get_attachment_count for event as comment_count %}
{% get_attachment_count for calendar.event event.id as comment_count %}
{% get_attachment_count for calendar.event 17 as comment_count %}

		
files.templatetags.attachments.get_attachment_editform(parser, token)

		Get a modelform object to edit an existing attachment.

Syntax:

{% get_attachment_editform for [object] as [varname] %}
{% get_attachment_editform for [app].[model] [object_id] as [varname] %}

		
files.templatetags.attachments.get_attachment_form(parser, token)

		Get a (new) form object to upload a new attachment.

Example usage:

{% get_attachment_form for [object] as [varname] %}
{% get_attachment_form for [app].[model] [object_id] as [varname] %}

		
files.templatetags.attachments.get_attachment_list(parser, token)

		Gets the list of attachments for the given params and populates the template
context with a variable containing that value, whose name is defined by the
‘as’ clause.

Syntax:

{% get_attachment_list for [object] as [varname] %}
{% get_attachment_list for [app].[model] [object_id] as [varname] %}

Example usage:

{% get_attachment_list for event as attachment_list %}
{% for attachment in attachment_list %}
 ...
{% endfor %}

		
files.templatetags.attachments.get_create_target()

		Get the target URL for the attachment form.

Example:

<form action="{% get_create_target %}" method="post">

		
files.templatetags.attachments.get_delete_url(attachment)

		Get the delete URL for an attachment.

Example:

delete

		
files.templatetags.attachments.get_download_url(attachment)

		Get the download URL for an attachment.

Example:

download

		
files.templatetags.attachments.get_edit_target(attachment)

		Get the edit URL for an attachment.

Example:

edit

		
files.templatetags.attachments.get_edit_url(attachment)

		Get the edit URL for an attachment.

Example:

edit

		
files.templatetags.attachments.get_view_url(attachment)

		Get the view URL for an attachment.

Example:

view

		
files.templatetags.attachments.render_attachment_editform(parser, token)

		Render the attachment form (as returned by {% render_attachment_editform %}) through
the attachments/editform.html template.

Syntax:

{% render_attachment_editform for [object] %}
{% render_attachment_editform for [app].[model] [object_id] %}

		
files.templatetags.attachments.render_attachment_form(parser, token)

		Render the attachment form (as returned by {% render_attachment_form %}) through
the attachments/form.html template.

Syntax:

{% render_attachment_form for [object] %}
{% render_attachment_form for [app].[model] [object_id] %}

		
files.templatetags.attachments.render_attachment_list(parser, token)

		Render the attachment list (as returned by {% get_attachment_list %})
through the attachments/list.html template

Syntax:

{% render_attachment_list for [object] %}
{% render_attachment_list for [app].[model] [object_id] %}

Example usage:

{% render_attachment_list for event %}

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

modules/views.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Views

views.py

This is the home for the basic CRUD which is included in django-files.
These views provide basic functionalities like adding new attachments, editing existing ones, downloading and deleting attachments.

		
class files.views.AttachmentCreateView(**kwargs)

		View responsible for creating new attachments.

		
form_class

		alias of AttachmentForm

		
model

		alias of Attachment

		
class files.views.AttachmentDeleteView(**kwargs)

		Deletes an attachment from the storage backend.

		
get_template_names()

		Add content type object app_name and model
to template search path.

		
model

		alias of Attachment

		
class files.views.AttachmentDetailView(**kwargs)

		Returns the details of an attachment.

		
model

		alias of Attachment

		
class files.views.AttachmentDownloadView(**kwargs)

		Returns the attachment file as a HttpResponse.

		
model

		alias of Attachment

		
class files.views.AttachmentEditView(**kwargs)

		Updates an existing attachment with new data.

		
form_class

		alias of AttachmentForm

		
model

		alias of Attachment

		
class files.views.NextMixin

		A mixin which returns the first valid value from
either “next” from POST data or success_url. If neither
is available, try to get the absolute url from model.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

modules/admin.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Admin interface

admin.py

		
class files.admin.AttachmentAdmin(model, admin_site)

		The default form used for the attachment model in the
admin interface.

		
set_is_private(request, queryset)

		Executes an SQL UPDATE on the queryset and
sets all objects is_public = False

		
set_is_public(request, queryset)

		Executes an SQL UPDATE on the queryset and
sets all objects is_public = True

		
class files.admin.AttachmentInlines(parent_model, admin_site)

		A generic stacked inline admin form which can be used
to display attachments for the various models they are
attached to.

To enable in the admin interface, add it to the model
like this.

Syntax:

from files.admin import AttachmentInlines

class MyModel(admin.ModelAdmin):

 inlines = [AttachmentInlines]

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment.png

usage/index.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Basic usage index

		Basic usage

		Retrieving URL’s

		Admin interface

		Override default templates

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

modules/forms.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Forms

forms.py

		
class files.forms.AttachmentForm(target_object, *args, **kwargs)

		Modelform for uploading and/or editing
attachments.

		
clean_attachment()

		Make sure the attachment file size is allowed.

		
clean_honeypot()

		Make sure the honeypot field is empty.

		
clean_security_hash()

		Make sure the security hash match what’s expected.

		
clean_timestamp()

		Make sure the timestamp is not too far (> 2 hours) in the past.

		
generate_security_data()

		Generate initial security data for the form.

		
generate_security_hash(content_type, object_id, timestamp)

		Generate a HMAC security hash from the provided info.

		
initial_security_hash(timestamp)

		Get the initial security hash from self.content_object
and a (unix) timestamp.

		
security_errors()

		Return the errors associated with security.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

usage/templates.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		django-files 1.0 documentation »

 		Basic usage »

Override default templates

If you wish to override the default templates (you probably will), this is how to do it.

The following paths are being used by the template tags and views

The search path is as follows (in this order):

		“attachments/app_label/model/<template name>.html”

		“attachments/app_label/<template name>.html”

		“attachments/model/<template name>.html”

		“attachments/<template name>.html”

where app_label is the app_label of the model which the attachment should be related to (in our case demosite), and the model is the model which the attachment should be related to (in our case shape).

This means that you can create a different form (if you choose to) for

		Each of your models (in one or more) of your apps

		A form for all your models in one or more apps

		One form for all your models across your entire project that shares a name

		Or just use a single form for your entire project

form.html

		Used by:

		
		files.views.AttachmentCreateView

		files.templatetags.attachments.render_attachment_form()

		files.templatetags.attachments.get_attachment_form()

Template used to render an upload form when adding a new attachment to some object.

edit_form.html

		Used by:

		
		files.views.AttachmentEditView

		files.templatetags.attachments.render_attachment_editform()

		files.templatetags.attachments.get_attachment_editform()

Template used to render an edit form for an existing attachment.

list.html

		Used by:

		
		files.templatetags.attachments.render_attachment_list()

		files.templatetags.attachments.get_attachment_list()

Render a list of attachments.

view.html

		Used by:

		
		files.views.AttachmentDetailView

Template for viewing the details of the attachment.

delete.html

		Used by:

		
		files.views.AttachmentDeleteView

Template used to show the “Really delete this attachment?”, and eventually post to the DeleteAttachmentView which performs the delete action.

deleted.html

		Used by:

		
		files.views.AttachmentDeleteView

After deleting an attachment, redirects to this template unless a next value is provided.

400-debug.html

A standard 400 error page used if settings.DEBUG = True
Not used in production mode.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

_static/file.png

usage/admin.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		django-files 1.0 documentation »

 		Basic usage »

Admin interface

As you probably know, Django comes with a nice admin interface [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#modeladmin-objects].
The django-files app comes with two pre-configured classes for using in the admin interface; A ModelAdmin [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#modeladmin-objects] class for the Attachment model, and a pretty basic GenericStackedInline [https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/#generic-relations-in-forms-and-admin] class you can use to hook into your models which has files attached.

AttachmentAdmin

files.admin.AttachmentAdmin

By enabling the admin autodiscover [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#hooking-adminsite-instances-into-your-urlconf] feature, this should automatically appear in your admin site.

AttachmentInlines

files.admin.AttachmentInlines

This generic inline can be used to get a nice list of attachments related to some object.
Take our Shape model from previous examples.

from django.contrib import admin
from demosite.models import Shape
from files.admin import AttachmentInlines

class ShapeAdmin(admin.ModelAdmin):
 inlines = [AttachmentInlines]

 def save_formset(self, request, form, formset, change):
 instances = formset.save(commit=False)
 for obj in instances:
 # Always save IP address of changed objects
 obj.ip_address = request.META["REMOTE_ADDR"]
 obj.save()
 formset.save_m2m()

admin.site.register(Shape, ShapeAdmin)

Permissions

The user in question needs to be a staff [https://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User.is_staff] member to be able to log into the admin interface [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#modeladmin-objects].

In addition, the following conditions must be met.

		
		Add a new attachment

		
		The loggin in user needs to have the files.add_attachment permission.

		
		Delete

		
		The logged in user needs to have superuser [https://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User.is_superuser] status.

		
		Change

		
		The loggine in user needs to have files.change_attachment permission.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

contents.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

django-files documentation contents

		About django-files
		Features

		Want to help?

		Basic usage index
		Basic usage

		Retrieving URL’s

		Admin interface

		Override default templates

		Module index
		Admin interface

		Forms

		Models

		Storage backends

		Provided template tags

		Views

Indices and tables

		Index

		Module Index

		Search Page

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Module index

		Admin interface

		Forms

		Models

		Storage backends

		Provided template tags

		Views

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

modules/models.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Models

models.py

		
class files.models.BaseAttachmentAbstractModel(*args, **kwargs)

		An abstract model that any custom attachment model should
subclass.

		
class files.models.Attachment(*args, **kwargs)

		A file attached to some object.

 © Copyright 2012, Rolf Håvard Blindheim.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

modules/storage.html

 Navigation

 		
 index

 		
 modules |

 		django-files 1.0 documentation »

Storage backends

storage.py

		
class files.storage.SQLiteStorage(using=None, base_url=None)

		This is the database storage for SQLite databases

		
_open(name, mode='rb')

		Return a File object.

		
_save(name, content)

		Do nothing.
We are calling a special write_binary signal
in the Attachment save() method, which will call the _write_binary()
method below, and write the binary file into the Attachment row.

		
_write_binary(instance, content)

		Do the actual writing of binary data to the table.
This method is called after the model has been saved,
and can therefore be used to insert data based on
information which was not accessible in the save method
on the model.

		
class files.storage.PostgreSQLStorage(using=None, base_url=None)

		This is the database storage for PostgreSQL databases

		
_open(name, mode='rb')

		Read the file from the database, and return
as a File instance.

		
_save(name, content)

		Do nothing.
We are calling a special write_binary signal
in the Attachment save() method, which will call the _write_binary()
method below, and write the binary file into the Attachment row.

		
_unlink_binary(instance)

		Unlink the binary data before deleting

		
_writ